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Farnesol and geraniol were glucosylated to the correspond-
ing unnatural �-glucosides, which were two new biotransforma-
tion products, by cultured plant cells of Eucalyptus perriniana,
Strophanthus gratus, and Phytolacca americana. Cultured E.
perriniana cells glycosylated (S)-perillyl alcohol to two �-
glycosides, i.e., �-glucoside and unnatural �-gentiobioside,
whereas only perillyl �-glucoside was produced by S. gratus
and P. americana. Perillyl �-glucoside was further converted
into two unnatural �-maltooligosaccharides, i.e., �-maltoside
and �-maltotrioside, by cyclodextrin glucanotransferase.

Plant cell culture is one of an ideal system for studying
the synthesis and metabolism of endogenous and exogenous
substances, and for production of scarce organic compounds that
are hardly accessible by conventional chemical synthesis, espe-
cially towards new and unnatural glycosides. Terpene alcohols
are widespread in essential oils of plants. Farnesol, geraniol,
and (S)-perillyl alcohol are clinically useful and important
terpenes, as they have chemotherapeutic and chemopreventive
activities against cancer cells.1 Irrespective of such pharmaco-
logical activity, their use as drugs is limited, as they are unstable,
scarcely soluble in water, and moreover, prone to sublime.
Glycosylation would be a clue so as to make such annoying
properties be improved, hydrophilic and stable in the biological
systems. Indeed, glycosylation of clinically useful phenolic
compounds such as polyphenols and tocopherols by cultured
plant cells has been reported.2 However, little attention has been
paid to the glycosylation of terpenes such as farnesol, geraniol,
and (S)-perillyl alcohol by cultured plant cells.

In some plants, terpene alcohols such as geraniol have been
reported to be generated from their disaccharide precursors, e.g.,
plant primeverosidases hydrolyze the disaccharide of geraniol to
give the aglycone and disaccharose unit.3 Mono-glucosides of
geraniol and farnesol, however, have not so far been isolated
from any plants. We report, herein, the glycosylation of farnesol,
geraniol, and (S)-perillyl alcohol by cultured plant cells of
Eucalyptus perriniana, Strophanthus gratus, and Phytolacca
americana to unnatural monosaccharides and disaccharide.
We also report the synthesis of unnatural oligosaccharides of
(S)-perillyl alcohol by glycosylation of perillyl glucoside with
cyclodextrin glucanotransferase (CGTase).

After incubation of farnesol (1) with cultured E. perriniana
cells, a glycosylation product 4 was isolated from the MeOH ex-
tract of the cells.4 The isolated yield of 4 was 69%. The structure
of the product 4 was elucidated through spectroscopic studies

with HRFABMS, 1H and 13CNMR, H–H COSY, and C–H
COSY as farnesyl �-D-glucoside (Figure 1).5 On the other
hand, S. gratus and P. americana glucosylated 1 to 4 in 22%
and 7%, respectively.

Geraniol (2) was subjected to the same biotransformation
system. Incubation of 2 with E. perriniana cells yielded unnatu-
ral glucoside, geranyl �-D-glucoside (5), in 75% yield, so far
having not been reported. S. gratus and P. americana converted
2 into 5 in 24% and 10%, respectively. On the other hand, (S)-
perillyl alcohol (3) was converted into two �-glycosides, perillyl
�-D-glucoside (6, 4%) and unnatural perillyl �-gentiobioside (7,
60%), which has not been identified before. In the case of bio-
transformation with S. gratus and P. americana, 6 was obtained
as the sole product in 16% and 5%, respectively.

A time course experiment was studied for glycosylation of
(S)-perillyl alcohol (3) with E. perriniana cells. Figure 2 shows
that formation of perillyl �-D-glucoside (6) first occurred,

1: n = 2, R1 = H; 2: n = 1, R1 = H; 
4: n = 2, R1 = β -Glc; 
5: n = 1, R1 = β -Glc.

3: R2 = H; 6: R2 = β -Glc; 7: R2 = β β-Glc-(1-6)- -Glc;
8: R2 = α -Glc-(1-4)-β-Glc; 
9: R2 = [α -Glc-(1-4)-]2β -Glc.
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Figure 1. Structures of substrates 1–3 and glycoside products
4–9.
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Figure 2. Glycosylation of (S)-perillyl alcohol (3) by cultured
cells of E. perriniana. Yield was determined by peak area
from HPLC. Yields of 3 ( ), 6 ( ), and 7 ( ) are plotted.
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followed by further glucosylation to give perillyl �-gentiobio-
side (7) in high yield.

Moreover, unnatural �-maltooligosaccharides of (S)-perillyl
alcohol were synthesized by glycosylation of perillyl �-gluco-
side (6) with CGTase.6 Two products were obtained and identi-
fied as perillyl �-maltoside (8, 27%) and perillyl �-maltotrioside
(9, 7%), which were two new compounds.

In summary, this study disclosed the synthesis of unnatural
�-glycosides of terpenes, including farnesol, geraniol, and
(S)-perillyl alcohol, by biocatalytic glycosylations. Cultured E.
perriniana cells showed considerably higher potential for the
production of unnatural terpene �-glycosides than S. gratus
and P. americana. The �-gentiobioside was selectively formed
in the case of glycosylation of cyclic terpene (S)-perillyl alcohol
by E. perriniana, and E. perriniana cells converted acyclic
terpenes, farnesol and geraniol, into only �-D-glucosides.
Sequential glycosylation of (S)-perillyl alcohol by plant cell
culture and CGTase afforded perillyl �-maltooligosaccharides.
The present tandem use of two glycosylation systems would
be applicable to the production of unnatural terpene glycosides,
and further studies on the physiological properties of these
terpene �-glycosides are now in progress.
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